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Heat absorption and Hall current effects on unsteady MHD 

flow past an inclined plate  

Gaurav Kumar*, S.M.K. Rizvi, Amresh Kumar 

In the present paper, we study the effect of heat absorption on unsteady 

flow of a viscous, incompressible, electrically conducting fluid past an 

impulsively started inclined plate with variable wall temperature and 

mass diffusion in the presence of transversely applied uniform magnetic 

field and Hall current. Earlier we analyzed the effects of radiation and 

chemical reaction on MHD flow past a vertical plate with variable 

temperature and mass diffusion. We had obtained the results which 

were in agreement  with the desired flow phenomenon. To study further, 

we are changing the model by considering heat absorption on fluid, 

and changing the geometry of the model. Here in this paper we are 

considering the plate positioned inclined from vertically plane and 

impulsively started with velocity u0. The temperature of plate and the 

concentration level near the plate is increase linearly with time. The 

governing equations involved in the present analysis are solved by the 

Laplace-transform technique. The results obtained have been analyzed 

with the help of graphs drawn for different parameters like thermal 

Grashof number, mass Grashof Number, Prandtl number, permeability 

parameter, Hall current parameter, heat absorption parameter, 

magnetic field parameter and Schmidt number. The numerical values 

obtained for skin-friction and Nusselt number have been tabulated. The 

results are found to be in a good agreement and the data obtained is in 

concurrence with the actual MHD fluid flow phenomenon. 

Keywords: MHD flow, heat absorption, inclined plate, variable 

temperature, mass diffusion, Hall current. 

1. Introduction  

The effect of heat absorption on MHD with heat and mass transfer is of great 

importance in many applications such as development of metal waste from spent 
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nuclear fuel, fluids undergoing exothermic and endothermic chemical reaction, 

convection in Earth’s mantle, post-accident heat removal, fire and combustion 

modeling etc. Hall effect on MHD mixed convective flow of a viscous 

incompressible fluid past a vertical porous plate immersed in porous medium with 

heat source was analyzed by Sharma et.al [11]. MHD-conjugate heat transfer 

analysis for a vertical flat plate in presence of viscous dissipation and heat 

generation was studied by Mamun et. al [5]. Shit and Haldar [8] have worked on 

combined effects of thermal radiation and Hall current on MHD free-convective 

flow and mass transfer over a stretching sheet with variable viscosity. Radiation 

effect on MHD free convection flow along vertical flat plate in presence of Joule 

heating and heat generation was proposed by Alia et.al [1]. Seth et.al [10] have 

investigated numerical solution of unsteady hydromagnetic natural convection flow 

of heat absorbing fluid past an impulsively moving vertical plate with ramped 

temperature. Tanvir and Alam [12] have worked on finite difference solution of 

MHD mixed convection flow with heat generation and chemical reaction. 

Unsteady hydromagnetic flow of a heat absorbing dusty fluid past a permeable 

vertical plate with ramped temperature was analyzed by Das et.al [2]. Stanford and 

Gerald [9] have studied on a new numerical analysis of the Hall effect on MHD 

flow and heat transfer over an unsteady stretching permeable surface in the 

presence of thermal radiation and heat source. Chemical reaction effect on 

unsteady MHD flow past an impulsively started oscillating inclined plate with 

variable temperature and mass diffusion in the presence of Hall current was 

presented by Rajput anf Kumar [6]. Further, Rajput and Kumar [7] have worked on 

effects of radiation and chemical reaction on MHD flow past a vertical plate with 

variable temperature and mass diffusion. Kumar along with Bansal [3] have 

considered unsteady flow past on vertical cylinder in the presence of an inclined 

magnetic field and chemical reaction. Chemical reaction effect on MHD flow past 

an impulsively started vertical cylinder with variable temperature and mass 

diffusion was studied by Kumar et.al [4]. This paper deals with an analysis of 

effects of heat absorption and Hall current on unsteady flow past an impulsively 

started inclined plate in the presence of transversely applied uniform magnetic field 

with heat and mass transfer. The problem is solved analytically using the Laplace 

Transform technique. A selected set of graphical results illustrating the effects of 

various parameters involved in the problem are presented and discussed. The 

numerical values of skin-friction have been tabulated. 

2. Mathematics Analysis.  

The geometric flow model of the problem is shown in Figure-1. The unsteady 

flow of an electrically conducting, viscous, incompressible and heat absorbing fluid 

past an impulsively started inclined plate with variable wall temperature and mass 

diffusion in the presence of Hall current has been considered. The x axis is taken 
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along the vertical plane and z axis is normal to it. Thus the z axis lies in the 

horizontal plane. The plate is inclined at angle α from vertical. The magnetic field 

B0 of uniform strength is applied perpendicular to the flow. Further, the angle of 

inclination changes then the magnetic field changes its direction, such that it 

always remains perpendicular to it. Thus the direction of magnetic field is tied with 

the plate. Initially it has been considered that the plate as well as the fluid is at the 

same temperature T∞. The species concentration in the fluid is taken as C∞. At time 

t > 0 the plate starts moving with velocity u0 in its own plane and temperature of 

the plate are raised to Tw. The concentration C near the plate is raised linearly with 

respect to time. 

 
Figure 1. 

 

Then under these assumptions and the Boussinesq’s approximation, the flow is 

governed by the following system of equations: 
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The following initial and boundary conditions are 
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,CC  ,TT  0,v  0,u:0t ∞∞ ====≤   for all z, 
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∞∞ →→=→ CC  ,TT  0,v  0,u   as ∞→z . 

 

Here u and v are the primary and secondary velocities, g- the acceleration due 

to gravity, β- volumetric coefficient of thermal expansion, t- time, m(=ωeτe) is the 

Hall current parameter with ωe - cyclotron frequency of electrons and τe- electron 

collision time, T- temperature of the fluid, β*- volumetric coefficient of 

concentration expansion, C- species concentration in the fluid, ν- the kinematic 

viscosity, ρ- the density, Cp- the specific heat at constant pressure, k- thermal 

conductivity of the fluid, D- the mass diffusion coefficient,  Tw- temperature of the 

plate at  z= 0, Q- heat absorption coefficient Cw - species  concentration at the plate 

z= 0, B0- the uniform magnetic field, σ - electrical conductivity.  

The following non-dimensional quantities are introduced to transform 

equations (1), (2), (3) and (4) into dimensionless form: 
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The symbols in dimensionless form are as under:   

u is the primary velocity, v - the secondary velocity, t - time, θ- the temperature, 

C - the  concentration, Gr - thermal Grashof number, Gr- mass Grashof number, μ- 

the coefficient of viscosity, Pr- the Prandtl number, Sc- the Schmidt number, H- 

heat absorption coefficient,  M- the magnetic parameter. 

Thus the model becomes: 
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The corresponding boundary conditions become: 

0,C  0,θ  0,v  0,u:0t ====≤      for all z , 

,tC  ,tθ  0,v  1,u:0t ====>      
at   z =0,                                           (11) 

0,C  0,θ  0,v  0,u →→→→
       as   ∞→z . 

 

Dropping bars in the above equations, we get: 
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The boundary conditions are: 

0,C 0,θ 0,v 0,u:0t ====≤       for all z, 

t,C  t,θ  0,v 1,u:0t ====>       at    z=0,                                               (16) 

0,C  0,θ  0,v  0,u →→→→       as ∞→z . 

 

Combining equations (12) and (13), the flow model becomes: 
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Finally, the boundary conditions become: 

0,C 0,θ 0,q:0t ===≤        for all z, 

t,C t,θ 1,q:0t ===>          at   z=0,                                                        (20) 

0,C  0,θ  0,q →→→          as ∞→z . 

Here q= u + i v,   

The dimensionless governing equations (17) to (19), subject to the boundary 

conditions (20), are solved by the usual Laplace - transform technique. The 

solutions obtained are as under: 
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The expressions for the constants involved in the above equations are given in 

the appendix.
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Skin friction  

The dimensionless skin friction at the plate z=0: 
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Nusselt number 

The dimensionless Nusselt number at the plate z=0 is given by:  
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3. Results and Discussion 

The velocity profiles for different parameters like thermal Grashof number 

(Gr), magnetic field parameter (M), Hall parameter (m), Prandtl number (Pr) and 

Heat  absorption parameter (H) are shown in figures 1.1 to 2.8. The fluid flow with 

high velocity when plate is vertical and low velocity when plate is horizontal, It is 

observed from figures 1.1 and 2.1 that the primary and secondary velocities of fluid 

decrease when the angle of inclination (α ) is increased. This is due to facts that 

fluid velocity depends on gravity components (gCosα). Figures 1.2, 2.2, 1.3 and 2.3 

show the buoyancy effect, and it is observed that both the primary and secondary 

velocities increase on increasing thermal Grashof number Gr and mass Grashof 

number Gm. Therefore, it concludes that buoyancy force tends to accelerate primary 

and secondary velocities. Also, if Hall current parameter m is increased then u 

increases, while v gets decreased (figures 1.4 and 2.4). The influence of magnetic 

field in a electrically conducting fluid has established a force which is known as 

Lorentz force and that force perform against the main flow. So these kind of 

resisting forces slow down the primary velocity of fluid as detected from figures 

1.5 and 2.5 that the effect of increasing values of the parameter M results in 

decreasing u and increasing v. It is deduced that when heat absorption parameter H 

is increased then the velocity u is increased, while velocity v get decreased (figures 

1.6 and 2.6). Further, it is observed that velocities decrease when Prandtl number 

and Schmidt number are increased (figures 1.7, 2.7, 1.8 and 2.8). In actual sense, 
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the increase of Sc means decrease of molecular diffusivity (D). This means the 

process of diffusion will decrease. 

Skin friction is given in table1. The value of τx  increases with the increase in 

Hall current parameter, Prandtl number,  thermal Grashof number, mass Grashof 

Number, heat absorption parameter and time, and it decreases with the angle of 

inclination of plate, the magnetic field and  Schmidt number. Similar effect is 

observed with τy, except the angle of inclination of plate, magnetic field, and time, 

in which case τy
 
increases with the angle of inclination of plate, magnetic field 

parameter, and decreases with time. Nusselt number is given in table2. The value 

of Nu decreases with increase in Prandtl number, heat absorption parameter and 

time. 
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Figure 1.1. Velocity u for different values of α  
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Figure 1.2. Velocity u for different values of Gm. 

 Gr= 10, Gm=100, Pr = 0.71, 

Sc=2.01 , m=01, M=02, H=5, t=0.5. 

α=150, 300, 600 

 Gr= 10, Gm=100, Pr = 0.71, Sc=2.01 , 

α=300, m=01, M=02, H=5, t=0.5. 

Gm=50, 70, 100 
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Figure 1.3. Velocity u for different values of Gr. 
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Figure 1.4. Velocity u for different values of m. 
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Figure 1.5. Velocity u for different values of M. 

 

 Gm=100, Pr = 0.71, Sc=2.01 , 

α=300, m=01, M=02, H=5, t=0.5. 

 Gr= 10, Gm=100, Pr = 0.71, Sc=2.01 , 

α=300, M=02, H=5, t=0.5. 

 Gr= 10, Gm=100, Pr = 0.71, 

Sc=2.01 , α=300, m=01, H=5, t=0.5. 

Gr= 10,20, 50 

m=01,05 

M=01, 03, 05 
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Figure 1.6. Velocity u for different values of H. 
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Figure 1.7. Velocity u for different values of Pr. 
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Figure 1.8. Velocity u for different values of Sc. 

 Gr= 10, Gm=100, Pr = 0.71, Sc=2.01 , 

α=300, m=01, M=02,  t=0.5. 

 Gr= 10, Gm=100, Sc=2.01 , α=300, 

m=01, M=02, H=5, t=0.5. 

 Gr= 10, Gm=100, Pr = 0.71, 

α=300, m=01, M=02, H=5, t=0.5. 

H = 01,0 5, 10. 

Pr = 0.71,7.01 

Sc=2.01 ,03, 04 
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Figure 2.1. Velocity v for different values of α  
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Figure 2.2. Velocity v for different values of Gm. 
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Figure 2.3. Velocity v for different values of Gr. 

 Gr= 10, Gm=100, Pr = 0.71, Sc=2.01, 

m=01, M=02, H=5, t=0.5. 

 Gr= 10, Pr = 0.71, Sc=2.01 , 

α=300, m=01, M=02, H=5, t=0.5. 

Gm=100, Pr = 0.71, Sc=2.01 , α=300, 

m=01, M=02, H=5, t=0.5. 

α=150, 300, 600. 

Gm=10, 20, 100 

Gr= 10,20, 50 
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Figure 2.4. Velocity v for different values of m. 
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Figure 2.5. Velocity v for different values of M. 
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Figure 2.6. Velocity v for different values of H. 

 Gr= 10, Gm=100, Pr = 0.71, 

Sc=2.01 , α=300, M=02, H=5, t=0.5. 

 Gr= 10, Gm=100, Pr = 0.71, 

Sc=2.01 , α=300, m=01, H=5, t=0.5. 

 Gr= 10, Gm=100, Pr = 0.71, Sc=2.01, 

α=300, m=01, M=02, t=0.5. 

m=01,05 

M=01, 03, 05 

H = 1, 5, 10 
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Figure 2.7. Velocity v for different values of Pr. 
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Figure 2.8. Velocity v for different values of Sc 

           

Table 1. Skin friction for different parameter (α in degrees) 

 

α M m Pr Sc Gm Gr H t �x �y 

15 2 1.0 0.71 2.01 100 10 05 0.2 1.1195290 

 
-0.223340 

30 2 1.0 0.71 2.01 100 10 05 0.2 

 

0.8472360 

 
-0.175820 

60 2 1.0 0.71 2.01 100 10 05 0.2 -0.150420 0.0016993 

30 5 1.0 0.71 2.01 100 10 05 0.2 -0.717858 1.0649428 

30 2 5.0 0.71 2.01 100 10 05 0.2 1.2885115 0.0212287 

30 2 1.0 7.01 2.01 100 10 05 0.2 1.0009976 0.2649130 

30 2 1.0 0.71 3.00 100 10 05 0.2 0.0432260 -0.612874 

 Gr= 10, Gm=100, Sc=2.01 , 

α=300, m=01, M=02, H=5, t=0.5. 

 Gr= 10, Gm=100, Pr = 0.71, α=300, 

m=01, M=02, H=5, t=0.5. 

Pr = 0.71,7.01 

Sc=2.01 ,03, 04. 
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30 2 1.0 0.71 4.00 100 10 05 0.2 0.3934309 -0.188970 

30 2 1.0 0.71 2.01 050 10 05 0.2 -0.337800 -0.194743 

30 2 1.0 0.71 2.01 100 50 05 0.2 0.8088639 -1.975099 

30 2 1.0 0.71 2.01 100 10 10 0.2 1.1059549 0.1179261 

30 2 1.0 0.71 2.01 100 10 05 0.4 5.4633980 -0.568607 

  

Table 2. Nusselt number for different parameter 

 

H Pr t Nu 

05 0.71 0.4 -2.9533214 

10 0.71 0.4 -3.7673379 

05 4.00 0.4 -2.2309082 

05 7.01 0.4 -2.9512142 

05 0.71 0.3 -2.3535000 

05 0.71 0.5 -3.5488468 

4. Conclusion  

In this paper a theoretical analysis has been done to study the effect of heat 

absorption on unsteady MHD flow past an impulsively started inclined plate with 

variable wall temperature and mass diffusion in the presence of Hall current. The 

results obtained for velocity and skin friction are in agreement with the actual flow. 

It is observed that the primary velocity increases with increasing the values of Hall 

parameter and heat absorption parameter. The secondary velocity decrease with 

increasing the values of Hall parameter heat absorption parameter. It is also found 

that the skin friction decreases with increasing the values of Hall parameter and 

heat absorption parameter. The Nusselt number decreases with heat absorption 

parameter. 
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